188 research outputs found

    Off-limb (spicule) DEM distribution from SoHO/SUMER observations

    Full text link
    In the present work we derive a Differential Emission Measure (DEM) dis- tribution from a region dominated by spicules. We use spectral data from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on-board the Solar Heliospheric Observatory (SoHO) covering the entire SUMER wavelength range taken off-limb in the Northern polar coronal hole to construct this DEM distribution using the CHIANTI atomic database. This distribution is then used to study the thermal properties of the emission contributing to the 171 {\AA} channel in the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO). From our off-limb DEM we found that the radiance in the AIA 171 {\AA} channel is dominated by emission from the Fe ix 171.07 {\AA} line and has sparingly little contribution from other lines. The product of the Fe ix 171.07 {\AA} line contribution function with the off-limb DEM was found to have a maximum at logTmax (K) = 5.8 indicating that during spicule observations the emission in this line comes from plasma at transition region temperatures rather than coronal. For comparison, the same product with a quiet Sun and prominence DEM were found to have a maximum at logT max (K) = 5.9 and logTmax (K) = 5.7, respectively. We point out that the interpretation of data obtained from the AIA 171 {\AA} filter should be done with foreknowledge of the thermal nature of the observed phenomenon. For example, with an off-limb DEM we find that only 3.6% of the plasma is above a million degrees, whereas using a quiet Sun DEM, this contribution rises to 15%.Comment: 12 pages, 6 figures accepted by Solar Physic

    The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    Full text link
    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi

    Deflection and Rotation of CMEs from Active Region 11158

    Full text link
    Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. We find good agreement between the ForeCAT results and the reconstructed CME positions and orientations. The CME deflections range in magnitude between 10 degrees and 30 degrees. All CMEs deflect to the north but we find variations in the direction of the longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with both clockwise and counterclockwise rotations occurring. Three of the CMEs begin with initial positions within 2 degrees of one another. These three CMEs all deflect primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, respectively differ by 20 degrees and 30 degrees. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, despite the active region facing near Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic

    Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)

    Full text link
    The \textit{Sun Watcher using Active Pixel system detector and Image Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2} (PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel centered at 174 \AA. These data, together with \textit{Atmospheric Imaging Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 and AIA 171 channels. We observe that bright points are seen in EUV channels corresponding to a magnetic-flux of the order of 101810^{18} Mx. We find that there exists a good correlation between total emission from the bright point in several UV\todash EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings and we have attempted to find the oscillation periods in bright points and their connection to magnetic flux changes. The observed periods are generally long (10\todash 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection

    How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    Full text link
    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which have to be optimized for use with data from SDO/HMI. Within this work we describe the corresponding analysis method and evaluate the force-free equilibria by means of how well force-freeness and solenoidal conditions are fulfilled, the angle between magnetic field and electric current and by comparing projections of magnetic field lines with coronal images from SDO/AIA. We also compute the available free magnetic energy and discuss the potential influence of control parameters.Comment: 17 Pages, 6 Figures, Sol. Phys., accepte

    Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO

    Full text link
    We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈\approx5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called 'acoustic halos' seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p mode absorption and mode conversions by the magnetic field.Comment: 22 pages, 12 figures, Accepted by journal Solar Physic

    Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter

    Full text link
    The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism, Sol. Phy

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases

    Full text link
    This study aims at the early diagnostics of geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently reliably identified with their solar sources in the central part of the disk. Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the Bz component near the Earth), as well as for the temporal intervals between the solar eruptions and the GMS onset and peak times. The larger the magnetic flux, the stronger the FD and GMS intensities are and the shorter the ICME transit time is. The revealed correlations indicate that the main quantitative characteristics of major non-recurrent space weather disturbances are largely determined by measurable parameters of solar eruptions, in particular, by the magnetic flux in dimming areas and arcades, and can be tentatively estimated in advance with a lead time from 1 to 4 days. For GMS intensity, the revealed dependencies allow one to estimate a possible value, which can be expected if the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
    • …
    corecore